ya.

/—7

» Los Alamos
NATIONAL LABORATORY
————— (37.0%4) ~

LA-UR-18-25474

Approved for public release; distribution is unlimited.

Title:
Author(s):

Intended for:

Issued:

Covert Malware Launching and Data Encoding: Malware Analysis Day 5

Pearce, Lauren

Presentation for 2 week course on malware analysis

2018-06-21

Disclaimer:
Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by the Los Alamos National Security, LLC for

the National Nuclear Security Administration of the U.S. Department of Energy under contract DE-AC52-06NA25396. By approving this
article, the publisher recognizes that the U.S. Government retains nonexclusive, royalty-free license to publish or reproduce the published
form of this contribution, or to allow others to do so, for U.S. Government purposes. Los Alamos National Laboratory requests that the
publisher identify this article as work performed under the auspices of the U.S. Department of Energy. Los Alamos National Laboratory
strongly supports academic freedom and a researcher's right to publish; as an institution, however, the Laboratory does not endorse the
viewpoint of a publication or guarantee its technical correctness.

Covert Malware Launching
and
Data Encoding

Malware Analysis Day 5

laurenp@Ilanl.gov

Launchers

* We've mentioned launchers |
previously — what is their role? 2 /Al
e Where do launchers often to 4
hide the malicious code?

* Why are we bringing them back
up today?

F

DLL Injection

* A method by which malware
forces a remote process to load
a malicious DLL.

* All the actions taken by the
malicious DLL appear to come
from the injected process.

* The malicious DLL will have the
permissions of the process it was
injected into.

Practical Malware Analysis Chapter 12 Figure 12-1

Hard Drive

Memory

Launcher
Malware

Malicious DLL

iexplore.exe

—

AN

Launcher

Malware

—
Injection

N

iexplore.exe

\(Malicious DLL |"'/

Blocked

Figure 12-1: DLL injection—the launcher malware cannot access the Internet until if
injects into iexplore.exe.

DLL Injection: The Launcher Malware Must...

1. Obtain a handle to the chosen victim process
a. CreateToolhelp32Snapshot, Process32First, Process32Z2Next

2. Open a handle to the victim process
a. OpenProcess

3. Use the victim process’s handle to allocate space in the victim process’s
memory for shenanigans
a. VirtualAllocEx

4. Write the evil library’s name into the allocated memory space
a. WriteProcessMemory

5. Create a remote thread in the victim’s process space

a. CreateRemoteThread—requires 3 arguments: the process handle, the address of the
code where the thread should start running, and an argument for the code at the specified

address.
i What are those arguments going to be?

DLL Injection: C Code

hVictimProcess = OpenProcess(PROCESS ALL ACCESS, 0, victimProcessID @);

pNameInVictimProcess = VirtualAllocEx(hVictimProcess,...,sizeof(maliciousLibraryName),...,...);
WriteProcessMemory(hVictimProcess,...,maliciousLibraryName, sizeof(maliciouslLibraryMName),...);
GetModuleHandle("Kernel32.d11");

GetProcAddress(...,"LoadlibraryA");
® (reateRemoteThread(hVictimProcess,...,...,L LoadLibraryAddress,pNameInVictimProcess,...,...);

Listing 12-1: C Pseudocode for DLL injection

Practical Malware Analysis Listing 12-1

DLL Injection - Review

* Clear as mud?

* What does malware achieve by
doing this?

Overview
Step 1
Process B Attach > Process A
OpenProcess();
Choose: DLL Path or Full DLL ‘
Step 2 Process A
Process B Allocate Memory
VirtualAllocEx();
Step 3 Copy DLL/Determine Process A
[Process & Addresses .
WriteProcessMemory(); DLL
DLL Path: Full DLL:
LoadLibrarya(); Get..O0ffset();
Step 4 Process A
I Procszn Execute
DLL

CreatERemotEThread{);r
NtCreateThreadEx();
RtlCreateUserThread();

http://blog.opensecurityresearch.com/2013/01/windows-dll-injection-basics.html €< An excellent article and how-to

DLL Direct Injection

* Looks very similar to DLL injection in the assembly, but writes the
actual DLL directly into the memory space of the victim process.

* How is this different from what we just talked about?

* It is possible to inject compiled code, but most often this method is
used to inject shell code

* |t's very difficult to inject code into a running process without causing the
process to crash.

* If you see this and it’s injecting more than the most simple shellcode,
you have an extremely skilled author.

* From my perspective, analyzing this involves memory forensics.

DLL Direct Injection

* Call Sequence:
* VirtualAllocEx
* WriteProcessMemory
* VirtualAllocEx
* WriteProcessMemory
* CreateRemoteThread

* Why two calls to VirtualAllocEx and WriteProcessMemory?
* One set to write the data that the remote thread will take as an argument.
* One set to write the actual code for the remote thread

* What do you think this would pass as arguments to WriteProcessMemory
* hProcess — Handle to the process to be injected
* |pBaseAddress — Pointer to the start of the code written in the remote process’s memory
* |[pParameters — Pointer to the data already written in the remote process’s memory

Process Replacement

* Process replacement is used to
overwrite the memory space of
a running process with a
malicious executable.

* Less risk of crashing the process
than direct injection.

https://www.panmacmillan.com/aliceinwonderlandbooks

LEWIS CARROLL

f i
(3
b

Process Replacement

1. Create a process, but launch it in a suspended state
a. CreateProcess with flag CREATE SUSPENDED

2. Free the memory that the target process controls
a. ZwUnmapViewOfSection

3. Allocate the now freed memory for use by your malware
a. VirtualAllocEx

4. Write evil code to your freshly allocated memory space
a. WriteProcessMemory

5. Set the entry point of the process to point at the malicious code
a. SetThreadcontext

6. Fire off the suspended process
a. ResumeThread

Process Replacement

* Why would the malware author use this technique?
 How can you detect this in dynamic analysis?
 What API calls alert you to the possibility of process replacement?

Demo

Hook Injection

* The Windows OS uses ”messaﬁes”
for communication between the
OS and applications. Hooks are
used to intercept messages that
are bound for applications from the

OS- Windows OS5 Windows O35

* Windows uses hooks for things like
macro recording and hot keys. .
Malware uses hooks for:

USER USER

q
q

Messages

q
q

« . I Threads] Malicious DLL
* Run malicious code whenever a XXXX
message is sent aiﬁ?f;f}in [Threads |
* Ensure a malicious DLL is loaded or lidserd
loads into a victim process’s memory pplication

Space Figure 12-3: Event and message flow in Windows

with and without hook injection

Hook Injection: Vocabulary

* Local Hooks — Destination is an internal process

 Remote Hook — Destination is a remote process

* High-Level — Hook procedure must be a DLL export. A high level hook
procedure will be mapped into the process space of a hooked thread.

* Low Level — Hook procedure must be contained in the process that installed
the hook

* Hook Chain — A list of pointers to hook procedures.

* When a message occurs that is associated with a particular type of hook, the
system passes the message to each procedure in the chain, one after the
other.

* A hook in the chain may prevent the message from making it to the next link.

Hook Injection: Keyloggers

* Windows hook types WH_KEYBOARD and WH_KEYBOARD LL
monitor keystrokes.

WH_KEYBOARD_LL
The WH_KEYBOARD_LL hook enables you to monitor keyboard input events about to be posted in a thread input queue.

For more information, see the LowLevelKeyboardProc callback function.

WH_KEYBOARD

The WH_KEYBOARD hook enables an application to monitor message traffic for WM_KEYDOWN and WM_KEYUP messages about to be returned by the
GetMessage or PeekMessage function. You can use the WH_KEYBOARD hook to monitor keyboard input posted to a message queue.

For more information, see the KeyboardProc callback function.

Hook Injection: SetWindowsHookEx

idHook — the type of hook procedure

to install Syntax
* |pfn — pointer to the hook procedure Crt
e hMod —

* High-level Hooks —handle to the DLL
containing the procedure specified in Ipfn

* Low Level Hooks — handle to the local HHOOK WINAPI SetWindowsHookEx(

module where the procedure specified in _In_ int idHook,
lptn is defined o _In_ HOOKPROC 1pfn,
 dwThreadld — the thread identifier for _In_ HINSTANCE hMod,

the thread that the hook procedure
will be associated with
* If 0 —the hook procedure is associated)

with all existing threads running on the
same desktop as the calling thread

In DWORD dwThreadId

Hook Injection: Thread Targeting

* Target a thread or load into all?

» Target a specific thread, the malware will include instructions to find the

thread identifier it’s looking for. Sufficient if your goal is to load a DLL into a
remote process.

» Search for the target process, if found get the thread you want, if not launch it yourself

* Load into all threads — degrades the performance of the system and more

likely to be detected. Necessary if you need to see every occurrence of a
message, such as in keylogging.

Hook Injection: An Example

00401100 push esi

00401101 push edi

00401102 push offset LibFileName ; "hook.dll"
00401107 call LoadLibraryA

0040110D mov esi, eax

0040110F push offset ProcName ; "MalwareProc"
00401114 push esi ; hModule
00401115 call GetProcAddress

00401118B mov edi, eax

0040111D call GetNotepadThreadId

00401122 push eax ; dwThreadId
00401123 push esi ; hmod

00401124 push edi ; 1pfn

00401125 push WH_CBT ; idHook

00401127 call SetWindowsHookExA

Listing 12-4: Hook injection, assembly code

Practical Malware Analysis Listing 12-4

Detours

* Microsoft library that
(theoretically) makes it easy to
extend existing application and
OS functionality. Malware
authors like this.

* Modify import tables
» Attach DLLs to existing programs

* Add function hooks to running
processes

roadtrafficsigns.com

Detours: How

* Malware targets an existing on-disk binary

* Malware modifies the PE structure of the targeted binary to add a
section named .detour. This section contains the original PE header,
but a new IAT.

* Malware uses the setdl1 tool provided by the Detours library to
modify the original PE header to point to the modified IAT

Detours: Example

“ PEview - C\notepad. exe

Fls Vaw Go ek

P O0O0O mrh =w

pFile Dt Descrigtion Value '
= nolepad wxn 7 ODIOFA4 OO01499€ MintName RVA, D1EQ _snwpnnt
IMAGE _DOS_HEADER OIOFAS (ODIG3AC MintName RVA 023 exit
MS-0OS Stub Pregram 00010FAL 00014884 HimtName RVA 0OAD _acmdin
IMAGE_NT_MEADERS 0OOIOFED COOI43BE HintName RVA 0050 __getmainargs
IMAGE_SECTION_HEADER tent OODIOFE4 OODI4ICE MintName RVA 0138 _insterm
IMAGE _SECTION_HEADER data OOOIOFEE COO143DA HintName RVA 0094 __setusermatherr
IMAGE _SECTION_HEADER reec 0O0I0FBC OOO143EE MintName RVA 0086 _adjuse Sdiv
IMAGE _SECTION_HEADER detoyr OIOFCD OOO149FE MiniMName RVA 0080 _ p_ commode
SECTION text OODIOFC4 QODIAA0E HimName RVA 0085 _p_ fmede
SECTION data OODIOFCE OODAAIC HinName RVA 0053 _ sel_app_type
W SECTION .rzec 0OI0FCC QODI4AZE HimMName RVA 0006 _controlp
- SE':O‘ _datcur o CODIOFD0 QOD14A3C HimMame RVA 0330 wesncpy
MEORT Name Table QOO10FOM Q0000000 End of kmperts rrsvert ol
IMPORT HirteMames & DLL Names || 00010520 0000001 Osdisl 0001
WPORT Disectory Table 00010F24 CO000000 _ End of kmpeds K 2)

Figure 12-4: A PEview of Detours and the evil.dll

Practical Malware Analysis Figure 12-4

<

APC Injection

e What?

* Asynchronous Procedure Call — A Windows feature that allows a thread to
execute some other code before executing its normal execution path.

* Every thread has a queue of APCs attached to it that are processed when the
thread is in an “alertable State”

* WaitForSingleObjectEx, WaitForMultipleObjectsEx, SleepEx
« Why?

* Thread creation has overhead, it’s more efficient to invoke a function on a
thread that already exists

* For Malware
* Get an existing thread to execute their code

APC Injection: Vocab

e Kernel-Mode APC — An APC generated for the system or a driver
e User-Mode APC — An APC generated for an application

|[dentifying APC Injection from User Space

* |dentifying thread targeting code:
* CreateToolhelp32Snapshot, Process32First, Process3Z2Next
* ZwQuerySystemInformation With the SYSTEM PROCESS INFORMATION
argument

* These are used to identify a target process
* Thread32First, Thread32Z2Next

* Once a target thread has been identified, malware can queue a function to be
invoked in a remote thread using the call QueueUseraAPC

QueueUserAPC

* pfnAPC — a pointer to the
malware-supplied APC function C++
to be called when the specified

thread enters an alertable state.
DWORD WINAPI QueueUserAPC(

* hThread — A handle to the target In_ PAPCFUNC pfnApPC,
thread. _In_ HANDLE hThread,

* dwData — A single value that is _In_ ULONG_PTR dwData
passed to the function pointed)5

to by pfnAPC

APC Injection: Example

00401DA9
00401DAD
00401DAF
00401DB1
00401DB9
00401DBB
00401DBD
00401DC1
00401DC2
00401DC8

push
push
push
call
test
jz

push
push
push
call

[esp+4+dwThreadld]
0

10h

ds:0OpenThread ©
esi, esi

short loc 401DCE
[esp+4+dwData]

esi
ds:LoadlLibraryA @
ds :QueueUserAPC

e o

A

e e

-

dwThreadld
bInheritHandle
dwDesiredAccess

dwData = dbnet.dll
hThread
pfnAPC

Listing 12-5: APC injection from a user-mode application

APC Injection from Kernel Space

 Why, if your malware already has access to kernel space, would you
be concerned with APC injection?

* Malicious drivers and rootkits still need to execute code in user space, but
living in kernel space there isn’t an easy way for them to do it.

* APC Injection gives kernel space malware a way to run code in user space.

* How?
* Create and dispatch a new thread with the APC
* That new thread executes the APC in a user-mode process
* Often involves shellcode

APC Injection from Kernel Space: Example

000119BD
000119BE
000119C0
000119C3
000119C4
000119C9
000119CB
000119CE
000119CF
000119D5
000119D7
000119D9
000119DA
000119DD
000119E0
000119E1

push
push
push
push
push
push
push
push
call
cmp
jz
push
push
push
push
call

ebx

10

[ebp+arg 4] ©
ebx

offset sub 11964
2

[ebp+arg 0] ©
esi
ds:KeInitializeApc
edi, ebx

short loc 119EA
ebx

[ebp+arg (]

[ebp+arg 8]

esi

edi ;KeInsertQueueApc

Listing 12-6: User-mode APC injection from kernel space

Demo

Data Encoding

“content modification for the purpose of hiding intent”

Hiding Intent

* How does data encoding allow malware to hide its intent?
* Hide config information — log file paths, C&C domains/Ips
* Hide the nature of content leaving the network
* Hide API calls or sequences of calls which would raise attention
* Hide strings that would reveal the malicious nature of the program

Custom Encoding

* Why would the malware author use custom encoding?

* All of the benefits of simple encoding mechanisms — lightweight, and
nonobvious.
* Actually MORE difficult for the analyst to decode than standard crypto

* With standard crypto, once you have the key and the know the algorithm they’re using,
it’s trivial to put together a decoder

Decoding: Turn the Malware Against Itself

e Use a debugger to manipulate the malware into decoding all of its
encoded strings.

* Write a script to feed your encoded blobs to the decoder and spit out
the output.

* This requires a paid Ida license, but is magical

* This is the ONLY method | have ever used to decode strings in
malware.

Decoding: Write a Decoder

e Use your favorite programming language and standard libraries to
write a decoder.

* This is what you turn to when method 1 doesn’t work. Used to be a
more standard approach, modern tools have changed that.

e Often the only feasible method to decode encoded network
communications — why?

Simple Ciphers

* Why would a malware author use an XOR when he could use DES?
* Small size and simplicity makes them viable for use in exploit shellcode
* Much less obvious in the code
* Lightweight — less overhead

* Simple Ciphers are to obscure — often this is sufficient.

Some Simple Ciphers

e Caesar Cipher
 Shift characters of the alphabet X characters to the right

* Double Transposition Cipher

* The plaintext into a matrix, shift rows and columns in a way determined by
the key, read the ciphertext from the array

* One Time Pad

* A standard non-secret mapping exists between letters and bits

* Pad = string of randomly selected bits same length as bits representing the
plaintext

* Plaintext is encoded by xoring the plaintext with the pad. Ciphertext is
decoded by xoring the ciphertext with the pad.

* |llustrates an important principle of XOR — one than many more complex ciphers rely on

Single Byte XOR

e Simple and reversible
e Same function to encode and decode

A T] A C K A T N O| O N
Oxdl | Ox54 | Ox54 | Oxdl | Oxd3 | OxdB | 0x20 | Oxd1 | Ox54 | O0x20 | Oxd4E | OxdF | OxdF | Ox4E | 0Ox00
} h h } |DELI W | FS | } H1F | r s s r <
Ox7d | 0x68 | 0=68 | Ox/d | Ox7F | Ox77 | Ox1C | Ox7d | Oxé8 | Ox1C | 0x72 | Ox71 | 0x71 | 0272 | Ox3c

Figure 13-1: The string ATTACK AT NOON encoded with an XOR of 0x3C (original string

at the top; encoded strings at the bottom)

Single Byte XOR Weakness

5F 48 42
AA 12 12
12 12 12
12 12 12
A8 02 12
46 7A 7B

12 10 12
12 12 12
12 12 12
12 12 12
1C oD A6
61 32 62

12 12
12 12
12 12
12 12
1B DF
60 7D

16 12
52 12
12 12
12 12
33 AA
75 60

1D
08
12
12
13
13

12
12
12
12
5E
7F

ED
12
12
12
DF
32

ED
12
12
13
33
7F

12
12
12
12
82
67

12
12
12
12
82
61

llllllllllllllll

Fz{a2b™ }u™s.2.ga

Listing 13-1: First bytes of XOR-encoded file a.git

NULL-Preserving Single Byte XOR

* How would you write a single byte xor encoding/decoding function
that didn’t obviously reveal the key?

If plaintextChar != key AND plaintextChar != NULL
cyphertextByte = plaintextChar XOR key

Finding XOR Encoding Functions

* You can search code in Ida — it may be useful to search for xor
instructions:
1. Switch so that your context is in Ida View
2. Search - Text
3. Enter xor, check the “find all occurrences box”, click OK

* Remember — xor is used for all sorts of compiler shortcuts. What
you’re looking for is xor in a loop, maybe with a cmp before it.

. 'R
Single Byte XOR Example AN
loc_4@813@1:
mov ec¥, counter
. Jap short oo AB1320)
* What argument holds the limit . T
for our counter? BN L
edx, [ebp+string_mod]
. add edx, counter loc 4@1329:
* Where is our counter pop_ eai
. mow al, [ed=] pop esi
incremented? xor eax, 12n pop ebx
[mow eCx, [ebp+string _mod]j} mov esp, ebp
. add ecx, counter pop ebp
* What IS Our Xor key? T:I: g:zﬂtrlﬂi LO12F Y :E:nFunctiun endp
 What instruction writes the
ciphertext into a new string? N L
loc 4812F4:
g BdX counter
add eax, 1
mo EﬂIJI'ItE'I', (2
|

Figure 13-3: Graphical view of single-byte XOR loop

Practical Malware Analysis Figure 13-3

More instructions of Interest

« ADD and SUB
e SHL SHR

* ROL ROR

* ROT

Base64 Encoding

e Converts binary data into a character set of only 64 characters.
* MIME Base64 uses A-Z, a-z, + and -, and = for padding.

* Squeezing binary into a confined space of 64 characters.

* Takes a 3 byte (24 bit) chunk and divides it into 4 6 byte chunks.
e Each 6 byte chunk is converted to a decimal number.
* That decimal number is an index to a character

Base64 Bit Encoding

Ox4

Ox1

Ox5

Ox4

Ox5

Ox4

o[1]o]o

oflo]o|n

ol1]o]

of[1]ofo

0|1

0f1

ofj1[o]o

16

21

17

20

Q

v

Figure 13-4: Base64 encoding of ATT

Recognhizing Base64 Encoding

* Look for strings of 64 different characters, then look where they are
used.

* Malware authors can use custom indexing strings — doesn’t have to be A-Z, a-
z,+and -.

* You need the malware’s indexing string to decode the base64 encoded blob

* Malware authors may encode their indexing string and only decode it when
needed

Demo

Demo

lda Python Magic

When you Find a Decoding Function...

- hl
xrefs to sub_4058FC (==
Direction Typ Address Text l
= Up p sub 402055+77 call sub_4058FC
b=l Up p sub_402055+8E call sub_4058FC
Up p sub_402055+BF call sub_4058FC =
Up p sub_402055+D6 call sub_4058FC
Up p sub_402055+285 call sub_4058FC
Up p sub_402055+29C call sub_4058FC 5
Do.. p sub_405978+9 call sub_4058FC
Do.. p sub_405978+2A call sub_4058FC
Do.. p sub_405978+47 call sub_4058FC
Do.. p sub_405978+04 call sub_4058FC
Do.. p sub_405978+81 call sub_4058FC
Do.. p sub_405978+9E call sub_4058FC
Do.. p sub_405978+BE call sub_4058FC
Do.. p sub_405978+D8 call sub_4058FC
Do.. p sub_405978+F5 call sub_4058FC
Do.. p sub_405978+112 call sub_4058FC
Do.. p sub_405978+12F call sub_4058FC
Do.. p sub_405978+14C call sub_4058FC
Do.. p sub_405978+169 call sub_4058FC
Do.. p sub_405978+186 call sub_4058FC
Do.. p sub_405978+1A3 call sub_4058FC
Do.. p sub_405978+1C0 call sub_4058FC
Do.. p sub_405978+1DD call sub_4058FC
Do.. p sub_405978+1FA call sub_4058FC
Do.. p sub_405978+217 call sub_4058FC
Do.. p sub_405978+234 call sub_4058FC
Do.. p sub_405978+251 call sub_4058FC il
[Ferere 2N L ancao r u L_anrnr
[0K J l Cancel l l Search l l Help
Linel of 115
e i Y - >

Ll 1 5=

; Attributes: bp-based fFrame
sub_ 485978 proc near

hHodule= dword ptr -4

push ebp
mov ebp, esp
push BCX

push offset alLld_23lenrek : "11d.23lenrek™
call sub_ 4858FC

add esp, &4

push eax ; 1pLibFileHame
call ds:LoadLibraryn

mou [ebp+hHodule], eax

cmp [ebp+hiodule], @

jz loc_L4B5FBB

3

il e =

push
call
add
push
mou
push
call
mou
push
call
add
push
mou
push
call
mou
push
call
add
push
mou
push
call
mou
push
call
add
push
mou
push
call
mou

offset aSserddacorpteg :; “'sserddAcorPteG™
sub_L4B858FC

esp, &4

eax ; 1pProcHame
eax, [ebp+hModule]

eax ; hHodule

ds:GetProcAddress

dword_415CAL4, eax

offset aWyrarbildaol ; "WyrarbilLdaolL™
sub 4AS8FC

esp, &4

eax

ecx, [ebp+hModule]

ecx

dword 415CA4

dword_415CAA, eax

offset a¥Yrarbileerf ; "yrarbileerF"
sub_4A58FC

esp, &4

eax

edx, [ebp+hModule]

edx

dword W15CAL

dword_415CAB, eax

offset aWleldnaheludomt ; “"WeldnaHeludoMteG"
sub_4B58FC

esp, 4

eax

eax, [ebp+hModule]

eax

dword_415CAL

dword_415CAC, eax

Ll e 55

; Attributes: bp-based frame
sub_4A59¥8 proc near

hHModule= dword ptyr -4

push ebp
mnov ebp, esp
push BCX

push offset alld_231lenrek ; 'kKernel32.dll’
call sub_4ASEFC

add esp, 4

push eax ; 1pLibFileName
call ds:LoadLibraryn

mou [ebp+hHodule], eax

cmp [ebp+hHodule], B

jz loc_485FBB

Y

i e =]

push
call
add
push
mov
push
call
mov
push
call
add
push
mouv
push
call
mov
push
call
add
push
mouv
push
call
mov
push
call
add
push
mouv

push
a3l

offset aSserddacorpteg ; ‘GetProcAddress®
sub_4858FC

esp, 4

eax ; 1pProcHame
eax, [ebp+hHodule]

eax ; hHodule

ds :GetProcAddress

GetProcAddress_8, eax

offset aWyrarbildaol ; ‘LoadLibraryW’
sub_4@58FC

esp, 4

eax

ecx, [ebp+hiodule]

eCx

GetProcAddress_@

LoadLibraryW, eax

offset a¥Yrarbileerf ; 'FreeLibrary’
sub_4@58FC

esp, 4

eax

edx, [ebp+hiModule]

edx

GetProcAddress_@

FreeLibrary, eax

offset aWeldnaheludomt ; ‘GetModuleHandleW®
sub_L4858FC

esp, 4

eax

eax, [ebp+hModule]

eax
NPa¥rPrartiddvyyacce 0O

Modern Standard Cryptographic Algorithms

* Why use these?
* Nearly impossible to decrypt ciphertext without possessing the key.
* You really want to make sure your target to never knows what you exfilled

|[dentifying Standard Crypto:
Strings and Imports

* Sometimes malware authors will compile static crypto libraries into
their malware — this leaves strings behind as evidence.

* If they rely on Microsoft crypto libraries, there will be imports.
They’re usually pretty easily identifiable as they tend to start with
Hcrypt”

Jump Search View Debugger Options Windows Help
Ctrl+C ‘/ [¥E] @@ rﬁlﬂﬁﬁﬁ?-ﬁ"?ﬁ'@x P

|[dentifying Standard Crypto: e B —

1 Unexplored Instruction External symbaol

. [S e e
Cryptographic Constants e o | §
 Most crypto algorithms use Xz | 2
“magic constants” — a fixed o -
number that is necessary to the = | E

functioning of the algorithm. S

* Exceptions are RC4 and IDEA. ==

Guess which standard algorithms o

. sub_10001DDD .
we see the most of in malware? e eoniee e
. sub_10001E87 Universal Unpacker Manual Reconstruct
sub_10001E8D Hex-Rays Decompiler

sub_10001EBO

sub_10001EDO Find crypt v2 .

* |da has a free plugin called Find
Crypt that searches for magic
constants.

The initial autoanalysis has been finished.
48EA78: found const array zinflate lengthExtraBits {used in zlib)
48EAEC: found const array zinflate distanceExtraBits (used in zlib)
4AF4A8: found const array CRC32 m tab (used in CRC32)

Found 3 known constant arrays in total |

Demo

Lab Work

* Labs 12-2, 12-4, and 13-2. Chapter 13 lab may be challenging - KANAL
more or less no longer exists and Ida plugins don’t work in the free
version of lda.

* We've discussed methods that don’t require plugins — look for loops with
math operations inside them, imports of crypt functions, xors, etc.

* Continue working on the Obfuscated Malware Lab — much of what we
went over today is applicable.

Sources/Questions/Comments/Corrections

* As usual, much credit to Andrew Honig and Michael Sikorski’s
Practical Malware Analysis.

* Note that animations (mostly highlighting on click) are extremely
useful when teaching from this slide deck. Email me for slide originals.

e Questions/Comments/Corrections to Lauren Pearce —
Laurenp@Ilanl.gov

