
LA-UR-18-25474
Approved for public release; distribution is unlimited.

Title: Covert Malware Launching and Data Encoding: Malware Analysis Day 5

Author(s): Pearce, Lauren

Intended for: Presentation for 2 week course on malware analysis

Issued: 2018-06-21

Disclaimer:
Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by the Los Alamos National Security, LLC for
the National Nuclear Security Administration of the U.S. Department of Energy under contract DE-AC52-06NA25396. By approving this
article, the publisher recognizes that the U.S. Government retains nonexclusive, royalty-free license to publish or reproduce the published
form of this contribution, or to allow others to do so, for U.S. Government purposes. Los Alamos National Laboratory requests that the
publisher identify this article as work performed under the auspices of the U.S. Department of Energy. Los Alamos National Laboratory
strongly supports academic freedom and a researcher's right to publish; as an institution, however, the Laboratory does not endorse the
viewpoint of a publication or guarantee its technical correctness.

Covert Malware Launching
and

Data Encoding
Malware Analysis Day 5

laurenp@lanl.gov

Launchers

• We’ve mentioned launchers
previously – what is their role?

• Where do launchers often to
hide the malicious code?

• Why are we bringing them back
up today?

DLL Injection

• A method by which malware
forces a remote process to load
a malicious DLL.

• All the actions taken by the
malicious DLL appear to come
from the injected process.

• The malicious DLL will have the
permissions of the process it was
injected into.

Practical Malware Analysis Chapter 12 Figure 12-1

DLL Injection: The Launcher Malware Must…

1. Obtain a handle to the chosen victim process
a. CreateToolhelp32Snapshot, Process32First, Process32Next

2. Open a handle to the victim process
a. OpenProcess

3. Use the victim process’s handle to allocate space in the victim process’s
memory for shenanigans
a. VirtualAllocEx

4. Write the evil library’s name into the allocated memory space
a. WriteProcessMemory

5. Create a remote thread in the victim’s process space
a. CreateRemoteThread – requires 3 arguments: the process handle, the address of the

code where the thread should start running, and an argument for the code at the specified
address.

i. What are those arguments going to be?

DLL Injection: C Code

Practical Malware Analysis Listing 12-1

DLL Injection - Review

• Clear as mud?

• What does malware achieve by
doing this?

http://blog.opensecurityresearch.com/2013/01/windows-dll-injection-basics.html  An excellent article and how-to

DLL Direct Injection

• Looks very similar to DLL injection in the assembly, but writes the
actual DLL directly into the memory space of the victim process.
• How is this different from what we just talked about?

• It is possible to inject compiled code, but most often this method is
used to inject shell code
• It’s very difficult to inject code into a running process without causing the

process to crash.

• If you see this and it’s injecting more than the most simple shellcode,
you have an extremely skilled author.

• From my perspective, analyzing this involves memory forensics.

DLL Direct Injection

• Call Sequence:
• VirtualAllocEx

• WriteProcessMemory

• VirtualAllocEx

• WriteProcessMemory

• CreateRemoteThread

• Why two calls to VirtualAllocEx and WriteProcessMemory?
• One set to write the data that the remote thread will take as an argument.
• One set to write the actual code for the remote thread

• What do you think this would pass as arguments to WriteProcessMemory
• hProcess – Handle to the process to be injected
• lpBaseAddress – Pointer to the start of the code written in the remote process’s memory
• lpParameters – Pointer to the data already written in the remote process’s memory

Process Replacement

• Process replacement is used to
overwrite the memory space of
a running process with a
malicious executable.

• Less risk of crashing the process
than direct injection.

https://www.panmacmillan.com/aliceinwonderlandbooks

Process Replacement

1. Create a process, but launch it in a suspended state
a. CreateProcess with flag CREATE_SUSPENDED

2. Free the memory that the target process controls
a. ZwUnmapViewOfSection

3. Allocate the now freed memory for use by your malware
a. VirtualAllocEx

4. Write evil code to your freshly allocated memory space
a. WriteProcessMemory

5. Set the entry point of the process to point at the malicious code
a. SetThreadcontext

6. Fire off the suspended process
a. ResumeThread

Process Replacement

• Why would the malware author use this technique?

• How can you detect this in dynamic analysis?

• What API calls alert you to the possibility of process replacement?

Demo
Lab 12-1

Hook Injection

• The Windows OS uses “messages”
for communication between the
OS and applications. Hooks are
used to intercept messages that
are bound for applications from the
OS.

• Windows uses hooks for things like
macro recording and hot keys.
Malware uses hooks for:
• Run malicious code whenever a XXXX

message is sent
• Ensure a malicious DLL is loaded or

loads into a victim process’s memory
space

Hook Injection: Vocabulary

• Local Hooks – Destination is an internal process

• Remote Hook – Destination is a remote process
• High-Level – Hook procedure must be a DLL export. A high level hook

procedure will be mapped into the process space of a hooked thread.
• Low Level – Hook procedure must be contained in the process that installed

the hook

• Hook Chain – A list of pointers to hook procedures.
• When a message occurs that is associated with a particular type of hook, the

system passes the message to each procedure in the chain, one after the
other.

• A hook in the chain may prevent the message from making it to the next link.

Hook Injection: Keyloggers

• Windows hook types WH_KEYBOARD and WH_KEYBOARD_LL
monitor keystrokes.

Hook Injection: SetWindowsHookEx

• idHook – the type of hook procedure
to install

• lpfn – pointer to the hook procedure

• hMod –
• High-level Hooks – handle to the DLL

containing the procedure specified in lpfn
• Low Level Hooks – handle to the local

module where the procedure specified in
lpfn is defined

• dwThreadId – the thread identifier for
the thread that the hook procedure
will be associated with
• If 0 – the hook procedure is associated

with all existing threads running on the
same desktop as the calling thread

Hook Injection: Thread Targeting

• Target a thread or load into all?
• Target a specific thread, the malware will include instructions to find the

thread identifier it’s looking for. Sufficient if your goal is to load a DLL into a
remote process.
• Search for the target process, if found get the thread you want, if not launch it yourself

• Load into all threads – degrades the performance of the system and more
likely to be detected. Necessary if you need to see every occurrence of a
message, such as in keylogging.

Hook Injection: An Example

Practical Malware Analysis Listing 12-4

Detours

• Microsoft library that
(theoretically) makes it easy to
extend existing application and
OS functionality. Malware
authors like this.
• Modify import tables

• Attach DLLs to existing programs

• Add function hooks to running
processes

roadtrafficsigns.com

Detours: How

• Malware targets an existing on-disk binary

• Malware modifies the PE structure of the targeted binary to add a
section named .detour. This section contains the original PE header,
but a new IAT.

• Malware uses the setdll tool provided by the Detours library to
modify the original PE header to point to the modified IAT

Detours: Example

Practical Malware Analysis Figure 12-4

APC Injection

• What?
• Asynchronous Procedure Call – A Windows feature that allows a thread to

execute some other code before executing its normal execution path.
• Every thread has a queue of APCs attached to it that are processed when the

thread is in an “alertable State”
• WaitForSingleObjectEx, WaitForMultipleObjectsEx, SleepEx

• Why?
• Thread creation has overhead, it’s more efficient to invoke a function on a

thread that already exists

• For Malware
• Get an existing thread to execute their code

APC Injection: Vocab

• Kernel-Mode APC – An APC generated for the system or a driver

• User-Mode APC – An APC generated for an application

Identifying APC Injection from User Space

• Identifying thread targeting code:
• CreateToolhelp32Snapshot, Process32First, Process32Next

• ZwQuerySystemInformation with the SYSTEM_PROCESS_INFORMATION
argument
• These are used to identify a target process

• Thread32First, Thread32Next

• Once a target thread has been identified, malware can queue a function to be
invoked in a remote thread using the call QueueUserAPC

QueueUserAPC

• pfnAPC – a pointer to the
malware-supplied APC function
to be called when the specified
thread enters an alertable state.

• hThread – A handle to the target
thread.

• dwData – A single value that is
passed to the function pointed
to by pfnAPC

APC Injection: Example

APC Injection from Kernel Space

• Why, if your malware already has access to kernel space, would you
be concerned with APC injection?
• Malicious drivers and rootkits still need to execute code in user space, but

living in kernel space there isn’t an easy way for them to do it.

• APC Injection gives kernel space malware a way to run code in user space.

• How?
• Create and dispatch a new thread with the APC

• That new thread executes the APC in a user-mode process

• Often involves shellcode

APC Injection from Kernel Space: Example

Demo
Lab 12-3

Data Encoding
“content modification for the purpose of hiding intent”

Hiding Intent

• How does data encoding allow malware to hide its intent?
• Hide config information – log file paths, C&C domains/Ips

• Hide the nature of content leaving the network

• Hide API calls or sequences of calls which would raise attention

• Hide strings that would reveal the malicious nature of the program

Custom Encoding

• Why would the malware author use custom encoding?
• All of the benefits of simple encoding mechanisms – lightweight, and

nonobvious.

• Actually MORE difficult for the analyst to decode than standard crypto
• With standard crypto, once you have the key and the know the algorithm they’re using,

it’s trivial to put together a decoder

Decoding: Turn the Malware Against Itself

• Use a debugger to manipulate the malware into decoding all of its
encoded strings.

• Write a script to feed your encoded blobs to the decoder and spit out
the output.
• This requires a paid Ida license, but is magical

• This is the ONLY method I have ever used to decode strings in
malware.

Decoding: Write a Decoder

• Use your favorite programming language and standard libraries to
write a decoder.

• This is what you turn to when method 1 doesn’t work. Used to be a
more standard approach, modern tools have changed that.

• Often the only feasible method to decode encoded network
communications – why?

Simple Ciphers

• Why would a malware author use an XOR when he could use DES?
• Small size and simplicity makes them viable for use in exploit shellcode

• Much less obvious in the code

• Lightweight – less overhead

• Simple Ciphers are to obscure – often this is sufficient.

Some Simple Ciphers

• Caesar Cipher
• Shift characters of the alphabet X characters to the right

• Double Transposition Cipher
• The plaintext into a matrix, shift rows and columns in a way determined by

the key, read the ciphertext from the array

• One Time Pad
• A standard non-secret mapping exists between letters and bits
• Pad = string of randomly selected bits same length as bits representing the

plaintext
• Plaintext is encoded by xoring the plaintext with the pad. Ciphertext is

decoded by xoring the ciphertext with the pad.
• Illustrates an important principle of XOR – one than many more complex ciphers rely on

Single Byte XOR

• Simple and reversible
• Same function to encode and decode

0x00

<

0x3c

Single Byte XOR Weakness

NULL-Preserving Single Byte XOR

• How would you write a single byte xor encoding/decoding function
that didn’t obviously reveal the key?

If plaintextChar != key AND plaintextChar != NULL

cyphertextByte = plaintextChar XOR key

Finding XOR Encoding Functions

• You can search code in Ida – it may be useful to search for xor
instructions:

1. Switch so that your context is in Ida View

2. Search  Text

3. Enter xor, check the “find all occurrences box”, click OK

• Remember – xor is used for all sorts of compiler shortcuts. What
you’re looking for is xor in a loop, maybe with a cmp before it.

Single Byte XOR Example

• What argument holds the limit
for our counter?

• Where is our counter
incremented?

• What is our xor key?

• What instruction writes the
ciphertext into a new string?

Practical Malware Analysis Figure 13-3

More instructions of Interest

• ADD and SUB

• SHL SHR

• ROL ROR

• ROT

Base64 Encoding

• Converts binary data into a character set of only 64 characters.

• MIME Base64 uses A-Z, a-z, + and -, and = for padding.

• Squeezing binary into a confined space of 64 characters.

• Takes a 3 byte (24 bit) chunk and divides it into 4 6 byte chunks.

• Each 6 byte chunk is converted to a decimal number.

• That decimal number is an index to a character

Base64 Bit Encoding

Recognizing Base64 Encoding

• Look for strings of 64 different characters, then look where they are
used.
• Malware authors can use custom indexing strings – doesn’t have to be A-Z, a-

z, + and -.

• You need the malware’s indexing string to decode the base64 encoded blob

• Malware authors may encode their indexing string and only decode it when
needed

Demo
13-1

Demo
Ida Python Magic

When you Find a Decoding Function…

Modern Standard Cryptographic Algorithms

• Why use these?
• Nearly impossible to decrypt ciphertext without possessing the key.

• You really want to make sure your target to never knows what you exfilled

Identifying Standard Crypto:
Strings and Imports
• Sometimes malware authors will compile static crypto libraries into

their malware – this leaves strings behind as evidence.

• If they rely on Microsoft crypto libraries, there will be imports.
They’re usually pretty easily identifiable as they tend to start with
“crypt”

Identifying Standard Crypto:
Cryptographic Constants
• Most crypto algorithms use

“magic constants” – a fixed
number that is necessary to the
functioning of the algorithm.
• Exceptions are RC4 and IDEA.

Guess which standard algorithms
we see the most of in malware?

• Ida has a free plugin called Find
Crypt that searches for magic
constants.

Demo
Lab 13-3

Lab Work

• Labs 12-2, 12-4, and 13-2. Chapter 13 lab may be challenging - KANAL
more or less no longer exists and Ida plugins don’t work in the free
version of Ida.
• We’ve discussed methods that don’t require plugins – look for loops with

math operations inside them, imports of crypt functions, xors, etc.

• Continue working on the Obfuscated Malware Lab – much of what we
went over today is applicable.

Sources/Questions/Comments/Corrections

• As usual, much credit to Andrew Honig and Michael Sikorski’s
Practical Malware Analysis.

• Note that animations (mostly highlighting on click) are extremely
useful when teaching from this slide deck. Email me for slide originals.

• Questions/Comments/Corrections to Lauren Pearce –
Laurenp@lanl.gov

