skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Structural and growth aspects of electron beam physical vapor deposited NiO-CeO{sub 2} nanocomposite films

Journal Article · · Journal of Vacuum Science and Technology. A, Vacuum, Surfaces and Films
DOI:https://doi.org/10.1116/1.4937357· OSTI ID:22489802

Deposition of composite materials as thin film by electron beam physical vapor deposition technique (EB-PVD) still remains as a challenge. Here, the authors report the deposition of NiO-CeO{sub 2} (30/70 wt. %) composites on quartz substrate by EB-PVD. Two NiO-CeO{sub 2} nanocomposite targets—one as green compact and the other after sintering at 1250 °C—were used for the deposition. Though the targets varied with respect to physical properties such as crystallite size (11–45 nm) and relative density (44% and 96%), the resultant thin films exhibited a mean crystallite size in the range of 20–25 nm underlining the role of physical nature of deposition. In spite of the crystalline nature of the targets and similar elemental concentration, a transformation from amorphous to crystalline structure was observed in thin films on using sintered target. Postannealing of the as deposited film at 800 °C resulted in a polycrystalline structure consisting of CeO{sub 2} and NiO. Deposition using pure CeO{sub 2} or NiO as target resulted in the preferential orientation toward (111) and (200) planes, respectively, showing the influence of adatoms on the evaporation and growth process of NiO-CeO{sub 2} composite. The results demonstrate the influence of electron beam gun power on the adatom energy for the growth process of composite oxide thin films.

OSTI ID:
22489802
Journal Information:
Journal of Vacuum Science and Technology. A, Vacuum, Surfaces and Films, Vol. 34, Issue 2; Other Information: (c) 2015 American Vacuum Society; Country of input: International Atomic Energy Agency (IAEA); ISSN 0734-2101
Country of Publication:
United States
Language:
English