skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Solvent-mediated internal conversion in diphenoxyethane-(H{sub 2}O){sub n}clusters, n = 2-4

Journal Article · · Journal of Chemical Physics
DOI:https://doi.org/10.1063/1.4917307· OSTI ID:22415673

1,2-diphenoxyethane (DPOE) is a flexible bichromophore whose excited states come in close-lying pairs whose splitting and vibronic coupling can be modulated by solvent. Building on the ground state infrared spectroscopy of DPOE-(H{sub 2}O){sub n} clusters with n = 2-4 from the adjoining paper [Walsh et al., J. Chem. Phys. 142, 154303 (2015)], the present work focuses on the vibronic and excited state infrared spectroscopies of the clusters. The type and degree of asymmetry of the water cluster binding to DPOE is reflected in the variation in the magnitude of the S{sub 1}/S{sub 2} splitting with cluster size. Excited state resonant ion-dip infrared spectroscopy was performed at the electronic origins of the first two excited states in order to explore how the water clusters’ OH stretch spectra report on the nature of the two excited states, and the interaction of the S{sub 2} state with nearby S{sub 1} vibronic levels mediated by the water clusters. The data set, when taken as a whole, provides a state-to-state view of internal conversion and the role of solvent in mediating conversion of electronic excitation between two chromophores, providing a molecular-scale view of Kasha’s rule.

OSTI ID:
22415673
Journal Information:
Journal of Chemical Physics, Vol. 142, Issue 15; Other Information: (c) 2015 AIP Publishing LLC; Country of input: International Atomic Energy Agency (IAEA); ISSN 0021-9606
Country of Publication:
United States
Language:
English